
How do you solve Cos (a+B) = 1-tanA tanB/ secA secB - Socratic
Feb 23, 2018 · Use cos(A +B) = cosAcosB − sinAsinB where cosA & cosB are both non-zero.
How will you prove the formula - Socratic
Oct 2, 2016 · How will you prove the formula sin(A + B) = sin A cos B + cos A sin B using formula of scalar product of two vectors?
Prove the identity sinx=cos(pi/2-x)? - Socratic
Apr 29, 2018 · "see explanation" >"using the "color (blue)"trigonometric identity" •color (white) (x)cos (a-b)=cosacosb+sinasinb "here "a=pi/2" and "b=x rArrcos (pi/2-x) =cos (pi ...
Check the following identity? 2cos(a+b)sin(a-b)=sin2a-sin2b
Jun 1, 2018 · That's correct 2cos (a+b)sin (a-b)=sin2a-sin2b LHS 2cos (a+b)sin (a-b) = 2 (cosacosb-sinasinb) (sinacosb-cosasinb) = 2 (sinacosacos^2b-cosbsinbcos^2a-sinbcosbsin^2a ...
Convert #5cos((5pi)/3)cos((5pi)/3)# as a sum of ... - Socratic
Mar 29, 2017 · 5cos ( (5pi)/3)cos ( (5pi)/3)=5/2 (cos ( (10pi)/3)+cos0) = 5/2 (cos ( (10pi)/3)+1) As cos (A+B)=cosAcosB-sinAsinB and cos (A-B)=cosAcosB+sinAsinB adding the two we ...
The question is below - Socratic
Jun 5, 2018 · Given cosAcosB+sinAsinBsinC=1 =>cosAcosB+sinAsinB-sinAsinB+sinAsinBsinC=1 =>cos (A-B)-sinAsinB (1-sinC)=1 =>1-cos (A-B)+sinAsinB (1-sinC)=0 =>2sin^2 ( (A-B)/2)+sinAsinB (1-sinC)=0 Now in above relation the first term being squared quantity will be positive.In the second term A,B and C all are less than 180^@ but greater than zero. So sinA …
How do you use a double angle formula to rewrite the expression
How do you use a double angle formula to rewrite the expression (cos x + sin x)(cos x − sin x)?
Question #96e6c - Socratic
Feb 15, 2018 · cos(a-b)+cos(b-c)+cos(c-a)=-3/2 =>cosacosb+sinasinb+cosbcosc+sinbsinc+cosc cosa+sincsina=-3/2 =>2cosacosb+2sinasinb+2cosbcosc+2sinbsinc+2cosc cosa+2sincsina+3=0 ...
How do you rewrite #(tan20+tan32)/(1-tan20tan32)# as a
Dec 27, 2016 · How do you rewrite tan 20 + tan 32 1 − tan 20 tan 32 as a function of a single angle and then evaluate?
How to prove cot x + tan 2x=cot x sec2x? - Socratic
Dec 23, 2017 · Reminder : cotx = cosx sinx tanx = sinx cosx cos(a − b) = cosacosb +sinasinb secx = 1 cosx Therefore, LH S = cosx + tan2x = cosx sinx + sin2x cos2x = cosxcos2x + sinxsin2x sinxcos2x = cosx sinxcos2x = cosx sinx ⋅ 1 cos2x = cotxsec2x = RH S QED