
Hyperbolic functions - Wikipedia
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle …
Hyperbolic Functions - sinh, cosh, tanh, coth, sech, csch - Math10
Hyperbolic Functions - sinh, cosh, tanh, coth, sech, csch Definition of hyperbolic functions Hyperbolic sine of x \displaystyle \text {sinh}\ x = \frac {e^ {x} - e^ {-x}} {2} sinh x = 2ex −e−x …
Hyperbolic Trigonomic Identities - Math2.org
Relations to Trigonometric Functions sinh (z) = -i sin (iz) csch (z) = i csc (iz) cosh (z) = cos (iz) sech (z) = sec (iz) tanh (z) = -i tan (iz) coth (z) = i cot (iz)
Hyperbolic Trig Identities - List of Hyperbolic Trigonometry …
Learn Hyperbolic Trig Identities and other Trigonometric Identities, Trigonometric functions, and much more for free. Download Hyperbolic Trig Worksheets.
Hyperbolic Functions - Math is Fun
Both cosh and sech are Even Functions, the rest are Odd Functions. The Derivatives are: d dx sinh (x) = cosh (x) d dx cosh (x) = sinh (x) d dx tanh (x) = 1 − tanh 2 (x) Math explained in easy language, plus puzzles, games, quizzes, worksheets and a …
双曲函数 (Hyperbolic functions) - 知乎
三角函数有反三角函数,就是三角函数的逆函数,双曲函数也有,下面是sinh、cosh、tanh的反函数图像: 并且我们是可以求出各个反双曲函数的对数表示式的: 这些是怎么算出来的? 其实和我们之前计算反函数是一样的,以sinh的反函数为例: 说白了就是解方程,所以其他的反函数函数的对数表示式我们也都是可以计算出来的,大家可以试一下。 OK,今天介绍双曲函数就到这里,其他内容后续再来分享吧。 如果大家上完课、看完这篇内容还有疑问可以私信我,毕竟Further …
双曲函数 - 维基百科,自由的百科全书
在 数学 中, 双曲函数 是一类与常见的 三角函数 (也叫圆函数)类似的函数。 最基本的双曲函数是 雙曲正弦 函数 和 雙曲餘弦 函数 ,从它们可以导出 双曲正切 函数 等,其推导也类似于三角函数的推导。 双曲函数的反函数称为 反双曲函数。 双曲函数的定义域是实数,其自变量的值叫做 双曲角。 双曲函数出现于某些重要的线性 微分方程 的解中,譬如說定义 悬链线 和 拉普拉斯方程。 最簡單的幾種雙曲函數為 [1]: {\displaystyle \tanh x= {\frac {\sinh x} {\cosh x}}= {\frac {e^ {x} …
sinh, cosh, tanh, coth, sech, csch là gì? - Toán Học Việt Nam
Bài này sẽ nêu các công thức xác định sinh x, cosh x, tanh x, coth x, sech x, csch x và một số tính chất cơ bản liên quan. sinh, cosh, tan...
Derivatives of Hyperbolic Functions
The other hyperbolic functions tanh x, coth x, sech x, csch x are obtained from sinh x and cosh x in exactly the same way as the trigonometric functions tan x, cot x, sec x and csc x are defined in terms of sin x and cos x: The derivatives of hyperbolic functions can be easily found as these functions are defined in terms of exponential functions.
Taylor Series Expansions of Hyperbolic Functions - eFunda
Taylor series expansions of hyperbolic functions, i.e., sinh, cosh, tanh, coth, sech, and csch.