
GitHub - openai/multiagent-particle-envs: Code for a multi-agent ...
Used in the paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. To install, cd into the root directory and type pip install -e . make_env.py: contains code for …
【多智能体强化学习】多智能体环境MPE(multiagent particle …
MPE (multiagent particle environment)是由OpenAI开发的一套时间离散、空间连续的二维多智能体环境,该环境通过控制二维空间中不同角色粒子(particle)的运动来完成一系列任务, …
【MARL】多智能强化学习测试环境:SMAC、MPE、PettingZoo …
在多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)的研究和应用中,构建合适的环境来测试和评估算法是非常重要的。 以下是一些常用的多智能体强化学习环境,它们涵盖 …
Lizhi-sjtu/MARL-code-pytorch - GitHub
Concise pytorch implements of MARL algorithms, including MAPPO, MADDPG, MATD3, QMIX and VDN.
Environments — MARLlib v1.0.0 documentation - Read the Docs
Multi-particle Environments (MPE) are a set of communication-oriented environments where particle agents can (sometimes) move, communicate, see each other, push each other …
GitHub - Replicable-MARL/MARLlib: One repository is all that is ...
MARLlib unifies diverse algorithm pipelines with agent-level distributed dataflow, allowing researchers to develop, test, and evaluate MARL algorithms across different tasks and …
JaxMARL Documentation
JaxMARL combines ease-of-use with GPU-enabled efficiency, and supports a wide range of commonly used MARL environments as well as popular baseline algorithms. Our aim is for …
Extended PyMARL:全面的 MARL Benchmark - 知乎 - 知乎专栏
在完全观测情况下,独立学习算法跟 MARL 算法性能近似,两者的差异往往在部分观测和需要密切合作的 SMAC 等任务中体现。 整体来讲, 独立学习算法中 IPPO>IA2C>IQL,CTDE 算法中 …
Multi-agent Particle Environment - MPE多智能体强化学习运行环 …
Feb 28, 2021 · MPE 环境是一个时间离散、空间连续的二维环境,UI的界面风格如图所示,它通过控制在二维空间中代表不同含义的粒子,实现对于各类MARL 算法 的验证。 MPE被人们广泛 …
MARBLER offers a robust and comprehensive evaluation platform for MRRL by marrying Georgia Tech’s Robotarium (which enables rapid deployment on physical MRS) and OpenAI’s Gym …
- Some results have been removed