
激活函数小结:ReLU、ELU、Swish、GELU等-CSDN博客
Feb 25, 2024 · 采用ReLU的神经元只需要进行加、乘和比较的操作,计算上更加高效。 2. ReLU函数被认为具有生物学合理性,比如单侧抑制、宽兴奋边界。 在生物 神经网络 中,同时处于兴 …
Deep Learning 101: Transformer Activation Functions Explainer
Aug 16, 2022 · With the growth of Transformer based models, different variants of activation functions and GLU (gated linear units) have gained popularity. In this post, we will cover several different activation functions, their respective use cases and pros and cons.
从ReLU到GELU,一文概览神经网络的激活函数 - 知乎
来自丹麦技术大学的 Casper Hansen 通过公式、图表和代码实验介绍了 sigmoid、ReLU、ELU 以及更新的 Leaky ReLU、SELU、GELU 这些激活函数,并比较了它们的优势和短板。 选自mlfromscratch,作者:Casper Hansen,机器之心编译,参与:熊猫、杜伟。 在计算每一层的激活值时,我们要用到激活函数,之后才能确定这些激活值究竟是多少。 根据每一层前面的激活、权重和偏置,我们要为下一层的每个激活计算一个值。 但在将该值发送给下一层之前,我们要 …
ELU — PyTorch 2.6 documentation
Applies the Exponential Linear Unit (ELU) function, element-wise. Method described in the paper: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).
GLU: Gated Linear Unit implementation - Medium
Dec 3, 2020 · GLU is far more stable than ReLU and learns faster than sigmoid. I already tried with other fancy activations like Mish, not better than GLU here. Watch out for dead ReLU.
ReLU vs Leaky ReLU vs ELU with pros and cons - Data Science …
Aug 16, 2024 · I am unable to understand when to use ReLU, Leaky ReLU and ELU. How do they compare to other activation functions (like the sigmoid and the tanh) and their pros and cons.
大模型基础|激活函数|从ReLU 到SwiGLU - 知乎
SwiGLU是 Gated Linear Units (GLU)激活函数的一种变体,由Noam Shazeer在论文《GLU Variants Improve Transformer》的论文中提出。 本文主要介绍不同激活函数(如ReLU、GELU和Swish)在FFN层中的应用。 Transformer模型通过 多头注意力层 和FFN层交替工作。 FFN层存在于Transformer架构的编码器和解码器部分中。 例如,下方的编码器块由多头注意力层和一个FFN层组成。 FFN层包括两个线性变换,中间插入一个非线性激活函数。 最初的Transformer …
Some recent activation functions mimicking ReLU - GitHub Pages
Aug 20, 2024 · Activation functions play a critical role in deep learning, influencing how models learn and generalize. Below is a description of the relationships between several important activation functions: ReLU, ELU, GELU, GLU, SiLU, Swish, ReGLU, GEGLU, and SwiGLU. 1. ReLU (Rectified Linear Unit)
常用激活函数 (relu,glu,gelu,swish等)_glu激活函数-CSDN博客
Feb 23, 2022 · 使用Relu的SGD 算法 的收敛速度比sigmoid和tanh块,在x>0区域上不会出现梯度饱和和梯度消失的问题。 计算复杂度低,不需要指数运算。 缺点: 产生这种现象的两个原因:参数初始化问题;learning rate太高导致在训练过程中参数更新太大。 为了解决dead relu现象,用一个类似0.01的小值来初始化神经元,从而使relu在负数区域更偏向于激活而不是死掉,这里的斜率是确定的。 f ( x ) = m a x ( α x , x ) f (x) = max (\alpha x, x) f (x) = max(αx,x) 其中 α 为确定 …
ELU Activation Function
Jul 21, 2020 · Exponential Linear Unit (ELU) is a popular activation function that speeds up learning and produces more accurate results. This article is an introduction to ELU and its position when compared to other popular activation functions.
- Some results have been removed